Half-Reactions

A half-reaction is one of the two parts of a redox reaction-the oxidation half alone, or the reduction half alone. Half-reactions can be written by following the steps below:

1. Write the chemical formulas for the reactants and products.
2. Balance all atoms, other than O and H.
3. Balance O by adding $\mathrm{H}_{2} \mathrm{O}$.
4. Balance H by adding H^{+}.
5. Balance the charge on each side by adding e^{-}and cancel anything that is the same on both sides.

For basic solutions only.
6. Add OH^{-}to both sides to equal the number of H^{+}present.
7. Combine H^{+}and OH^{-}on the same side to form $\mathrm{H}_{2} \mathrm{O}$. Cancel equal amounts of $\mathrm{H}_{2} \mathrm{O}$ from both sides.

Example 1

Nitrous acid can be reduced in an acidic solution to form nitrogen monoxide gas. What is the reduction half-reaction for nitrous acid?

Example 2

Copper metal can be oxidized in a basic solution to form copper(I) oxide. What is the halfreaction for this process?

Half-Reaction Method

Now that we know how to write half-reaction equations, we can use these to determine the balanced redox reaction. To do so, follow the steps below:

1. Separate the skeleton equation into the start of two half-reaction equations.
2. Balance each half-reaction equation.
3. Multiply each half-reaction equation by simple whole numbers to balance the electrons lost and gained.
4. Add the two half-reaction equations, cancelling the electrons and anything else that is exactly the same on both sides of the equation.

For basic solutions only.
5. Add OH^{-}to both sides to equal the number of H^{+}present.
6. Combine H^{+}and OH^{-}on the same side to form $\mathrm{H}_{2} \mathrm{O}$. Cancel equal amounts of $\mathrm{H}_{2} \mathrm{O}$ from both sides.

Example 3

In a chemical analysis, a solution of dichromate ions is reacted with an acidic solution of iron(II) ions. The products formed are iron(III) and chromium(III) ions as shown by the following skeleton equation.

$$
\mathrm{Fe}^{2+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \rightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{Cr}^{3+}(a q)
$$

Balance the equation.

Example 4

Permanganate ions and oxalate ions react in a basic solution to produce carbon dioxide and manganese(IV) oxide.

$$
\mathrm{MnO}_{4}^{-}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q) \rightarrow \mathrm{CO}_{2}(a q)+\mathrm{MnO}_{2}(a q)
$$

Write the balanced redox equation for this reaction.

